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. ABSTRACT

’ This paper shows how to calculate the terms of a semiclassical (WKB)
expansion of the quantum-mechanical propagator corresponding to the quartic
anharmonic-oscillator potential, V = mcuzq2/2 5 )uq4/4. This nonperturbative
treatment expresses each term in the series as a path integral, which is then
evaluated in the framework of a formalism, introduced by C. DeWitt-Morette,
which does not entail the usual time-slicing operation followed by a 1imiting
procedure. The Gaussian measure used absorbs all the quadratic terms in the
expansion of the action functional about a classical path. The covariance of
this Gaussian measure is the Feynman Green function of the small-disturbance
operator of the system. This function can be obtained by varying the constants of
integration in the classical solution, and therefore the coefficients of the
expansion depend only on this classical solution. If the latter is chosen to
be the one which tends to its harmonic counterpart when A — 0, then it is

seen that the propagator also tends to its harmonic counterpart when A —> 0.
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I. INTRODUCTION
The one-dimensional quartic anharmonic osciilator is a particle of mass

m in a potential given by:

Vi) = St tee B i

It is an important model in physics as a prototype nonlinear field theory.and

has generated a great deal of activity in recent years for several reasons.
First, it is a simple example of a perturbation which causes the associated
quantum-mechanical quantities to be non-analytic in the coupling constant X\ .
Therefore, the usual perturbation series in powers of the coupling constant

2 that the Padé approximants of the

are divergent, although it has been shown
Rayleigh-Schrodinger series for the energy levels converge to the correct
eigenvalues of the Hamiltonian, which has a positive-definite spectrum for

A”> 0. The anharmonic oscillator is also the simplest nonlinear interaction

which still yields plane-wave periodic solutions in the associated A‘f“

field theory, and even admits of a restricted superposition princip1e3.

2’4.5

While the energy spectrum has been studied rather extensively s the
propagator K = <qb.tb|qa.ta> » or probability amplitude that a particle at
q, at time ty will be at q, at time ty, has not. The purpose of this paper is
to show how to calculate the terms of a semiclassical (WKB) expansion of this
propagator (in powers of ). This treatment, of necessity nonperturbative

since it does not hinge on any expansion in powers of A\ , expresses each term
in the series as a path integral. The latter is then evaluated in the framework

of a formalism where the usual approach of time-slicing followed by a 1imiting
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procedure is replaced by a more tractable definition, introduced by C. DeWitt-
MoretteG, which greatly simplifies calculations. This approach enabled us to
systematically generate all the terms in the semiclassical expansion, which
represents some progress over previous studies of approximating the anharmonic

7, Sarkar8, Mathews and

oscillator propagator by path-integral techniques (Lam
Seshadri).

First, the classical system is studied: the classical paths joining two
fixed endpoints are calculated and the 1imit of zero coupling constant is
discussed. Then, the classical action and other elements of the WKB expansion
(Jacobi commutator, Van Vleck - Morette function, Feynman's Green function) are
derived explicitly, and their connection with the small-disturbance equation
investigated. Finally, the path integrals constituting the terms of the WKB

expansion are exhibited and reduced to definite integrals over known functions,

first for an arbitrary potential, then for the anharmonic oscillator.

II. THE CLASSICAL SYSTEM
The Potential

The potential, given in (1). is sketched below for XA > 0 and N < O.
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Figure 1. The anharmonic oscillator potential V(q) = mcnzqzlz-r Xq‘/4
Ly = x2/2 - xta; y = (@) aime ot x s qt.\l"/uml’j].
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The potential well is always present for A < 0, so there will always be
harmonic motion in some neighborhood of the origin. As lAl decreases, the
well gets deeper and deeper, the maxima go higher and higher, and the points
where the potential crosses the horizontal axis are rejected farther and far-
ther. The drastic change in the shape of V as A changes sign is the cause for
the nonanalyticity in A . For A > 0, there will always be a stable ground
state, whereas for A < 0, the ground state is unstable, as there is a finite
probability for the particle to "leak out" of the well. The failure of pertur-

4

bation theory is due to the fact that at large distances the q term will always

dominate the q2 term, regardless how small A\ is.

Dynamical Equation

The dynamical equation for the classical path qc(t) is:

“L(U t Q‘"‘L(U + % ~1:((\ =& , (2)

It can be solved in terms of the (biperiodic) elliptic functions. Our source for

10

the latter is Byrd and Friedman's handbook™ ~. We choose the following form for

the solution of (2):
¢ = 4o enl D - ._
RORERCNEITRINS (3

where
b

QL = ‘-Cl t A "'j.: k& : A(if‘) :

/ 2 )
This corresponds to the case where the particle is released at q at time t-to

» 1

with no initial velocity. (For simplicity, we take the mass m equal to 1; it




can always be restored by replacing A by A/m). Note that the modulus k
lies always between 0 and 1/\V2 (= 0.707...). If we take the modulus k and

the phase to to be our constants of integration, we get:

pe ZEIwL ’W(k“lc)
R rvrrry wl\f:——u{*—’& Y

Classical paths

The classical paths of interest for the caiculation of the propagator

are those for which the initial and final positions are specified:
P - . ¢ ke
CL (%n) T T ) L,(*L) "qb'

(4}
Substituting these conditions in (4) yields the relatioship between the set
(k.to) and the set (qa,qb):

: w(t’.'to) -\ qq

w

(s)

() wiltit) oo KA
R esosp. o

where n and n' are integers,

9 & = A (¢)
wm TN ,\('-2*1)

and K(k) is the quarter-period of the cn function. Subtracting (5a) from (5b)

yields the final transcendental equations giving k in terms of q, and Qy:




wT

+

t =4, () + FNKW), (7)
Yi-2¢2 .

where any combination of signs is permitted, T= tb - ta. N is an integer, and

(K_f (ftz)i Cn',(%) % cn"(.%'i).

Equation (7) must be solved graphically for k (t0 is then determined, for

1

example, by Equation 5a). Since cn “u is defined only for ue[—l,l] s We must

have |qa‘\ K3 U and ‘qbl £ O Thus, in addition to the upper cutoff % on kz,

we have a lower cutoff:

L SR '

s % = ;
min 2( 3 +w'i<?) : wmax (|9, N91)
1

Note that cn™ " is always positive. It monotonically decreases from cn'l(-l) =
2K(k) to cn'l(l) = 0, with an inflexion poiﬁt at (0, K(k)).

A sample graphical solution of (7) is shown in Figure 2, for W=T =
9 = Q * 1. The cases A = 0.001, 0.5, and 1 are shown. The curve
wT/ mkz intersects CP'(kz) once, twice, or not at all. Each intersection
gives the modulus k for a possible classical path such that q(ta) = q, and q(tb)
= qy. There comes a point where each of the curves tﬁ(kz) + 4NK(k) (one for
each N) intersects wT/J-;:;l-(E twice for each N >N°. Therefore, there 1is

always a countab]y infinite number of paths, with a cluster point at kz =k,
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Figure 2, Classical paths for the anharmonic oscillator. Each intersection (circled)
gives a value of k which corresponds to a classical solution of the dynamical equa-

tion for fixed-endpoint boundary conditions.
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The higher the k, the higher the amplitude of the corresponding path (as revealed
by Equation 4).

Behavior as A —> 0. We shall be particularly concerned with the behavior

of our expressions as A approaches C. What happens to the classical soluticn
as A —> 0? For initial boundary conditions, it appears, according to (3), that
we retrieve harmonic motion: indeed, as A —» 0, k —> 0, .Q-—> W 5 and
cn - cos. However, for other boundary conditions, it appears, according to (4),
that we have a 1/ ‘rx singularity as A —> 0: indeed, for arbitrary values
of the constants of integration (say k2 = 0.3 and t, = 2 seconds), (4) indicates
that q_(t) ~ 1/{N as A — 0. Is harmonic motion irretrievable then as a
limiting case?

The answer is no. The reason is that only physical boundary conditions

142, 0.3 is

(such as position and velocity at certain times) are acceptable
not a physical boundary condition. When the latter are inserted, k will depend
on_A_in such a manner as to make at least one classical path q (t) reduce to
harmonic motion when A — 0.

In the case of endpoint boundary conditions, (4) shows that the only way
that qc(t) can retain its constant, preassigned values at t; and t, is if k2
goes to 0 as fast us A . The ratio kz/} -is thenh an arbitrary constant A,
which may be dependent on w , and (4) becomes qc(t) = Acosw(t-to), which is
harmonic motion. Figure 2 shows that as A approaches 0 there is always one
solution k2 which also approaches 0. This solution, which we call qco(t). is
the lowest-amplitude (or lowest-energy) path, and coincides, when A = 0, with
the (generally) unique harmonic-oscillator path between the two fixed endpoints.

The other paths correspond to values of k which do not go to 0 with \ , and




me . e

hence their amplitudes increase without bound as A — 0. Their graph becomes
in the 1imit, a set »f paral'el lines perpendicular to the t-axis, one of which
going through ta and the other through tb'

Our semiclassical expansion of the propagator will be about this regular
path qco(t). Since all the coefficients will depend, directly or indirectly, on
%o alone, the anharmonic propagator will tend toward the harmonic propagator as

the coupling constant tends to O.

Classical action

The classical action {or action functional evaluated at a classical path)

for the anharmonic oscillator is needed for the WKB approximation. It is given by: f

ty
k'S ;f L (9.0, §.(0),4)dk
: t

> 4 -ty «2
[ [0 testo -t agte]a

Using the integrals 312.02 (p. 193), 361.02 (p. 212), 312.04 (p. 193) of Reference

10, and the formula

E(‘\AI) e E(»«) =t (ui-w\, ""kl SN U.LSn w osn(u-w) ’ (\Z>

[ derived from formulas116.01 (p. 13) and 123.01 (p. 23) of Reference 10], we

obtain the answer:




|0

2w E( wT ),_ 2uh® s (ua) sn(uy),

= —-3AUI-2&‘ ﬂ1_2&1 3A\h_2&1

SN @l - ! /MmN &l -—
Vg l-z&"( il (a)

w“(l—&z)(2~3$§z) T
3A(1-249

— A (wy) em(yuy,) o\m(ub))] o

. 2
where u, . = “J(ta/b - to)/ | SR gl

Behavior when A = 0. Let us look at the behavior of Sc as A—> 0 along

2_5 0as N —> 0 such that k%/» is a constant. Using

the path P where k
the fact that E(u) = u + C)(kz), we easily see that SC is regular at A =0,

and reduces to the classical action for the harmonic osciliator.

ITI. THE QUANTUM SYSTEM

The Small-Disturbance Equation

Just as the classical system is dominated by the dynamical (or Euler-
Lagrange) equation, the quantum system is dominated by the small-disturbance
(or Jacobi) equation. The latter is the equation satisfied by a small variation
in the classical path, obtained, for examplg, by 2 small change in a constant
of integration, such as the total energy or an endpoint. The small-disturbance
equation is studied in more detail in Appendix A and in References 1 and 6c.

For the anharmonic oscillator, it is:
s
-4, -w -39’ Ho -0 (o)

Solutions of the smali-disturbance equation

Solutions of the small-disturbance equation can always be generated by

differentiating the classical solution with respect to a constant »f integration.
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This simple procedure was known to Jacobi™™, but it seems to be sometimes forgotten

today, as one still finds attempts at solving the equation directly; for example,
8

5 Sarkar~ has undertaken this very difficult task for the anharmonic oscillator

; (Equation 10).

' The functions we will need for the path-integral treatment of the propagator
are the Jacobi commutator J(t,t'), the Van Vleck - Morette (VVM) function
M(ta,tb), and the Feynman Green function G(t,t'). Their expressions are given
below, followed by their definition and derivation.

Jacobi commutator

3/
Tkt = (=288 7 oy vl dint .
w :
[ ) ( s oau ) - wew
28 \anwdmn’  Amudmu A )

“E(u’vul+ ‘?ep' (5nu'wu' 3 Snu CM_u_:_

f'2 -f:’_:\ dmu’ A

+lhtKMM’AM(u"u))] )

where
uz Wlt-t) w'z wlt-6) . & = -4
Vi-2 g+ Vi-2g*’ )

VVM function

M(ta’tb) o [J(ta’tb)] o 3 ('13

i Feynman's Green function

% Gt t) = I(E5t)0(t )Y (t-t") + 9(t,t,)a(t,,t")V(t'-t)
J(t,uty)

L
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Definitions and derivations

The Jacobi commutator. This function J(t,t') of two variables can be defined

as follows: the unique, retarded Green function of the small-disturbance operator,

satisfying

l-éf St ~%,\qlm]cs(t,(') =S 1-E) . (w)
MZ C

is G (t,t') = J(t,t')Y(t-t'), where Y(x)= 1 for x>0 and 0 otherwise. J(t,t') is
antisymmetric and satisfies the small-disturbance equation in both t and t'. It
is called the commutator because, as shown in Appendix A, it can be written as a
Poisson bracket of position at different times with respect to initial (or final)
position and momentum; when the system is quantized, this expression becomes the

commutator. For example, for initial boundary conditions, we have:

~

Ttea) - PHE A0 a0 35,6

,Z',C,c\ ’D ‘hl "( C{‘\ rz X ( \ g)

S 3 5 ‘ ' T ‘
9 (&) 4 () — — W), )],
l [S / ‘ }(‘i“,r‘\) ("\ L._,\ ]

W

For any two convenient constants of integration “ﬁ and 'Xl we can write the

commutator as (see proof in Appendix A):

09.(4) 29, (¢') _ 9, )09, (¢)

\T(“f,{’.')z 0, o, K R VRS 1. (")
29 ()0 (t) 29, ()09, ()
ook, W NV, ‘bo‘“

(or a similar expression with t, replaced by ta). where pc(t) is the classical
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momentum (equal to &c(t) for the anharmonic oscillator). We will use this formula

with qc(t) given by (4) and & =k, X, = t,- The velocity is given by:

. . ' \I fD
Q(t)—"—i\—(&——\/?z— Snu.c\nu 5—"&'(—{")1
- x .

where u is defined in (11). The formulas for differentiating the elliptic
functions with respect to the modulus k are found in Reference 10 (710.51-3, p.
283). Since the argument of the elliptic functions also depends on k, the chain

rule must be used to evaluate 2q_(t )/2 k and “c.éc(tb)/‘ok. We obtain:

’D—__Cj‘(&) BTN RN S vl 26 snu.dv u {2&“’“'&)
Y A (-2 A(1-25) (1-1LR)72

+ (”k&’z)[“‘E(u) +J€.'Lu s B.ZSH\&.CV\\L/AV\ u]lj .

The denominator in (16) is calculated to be:

W M) Mb) VI  Zuth

kut, . 0k, N ((-2&)

These formulas, along with (8), lead us to t;he stated expression (11) for J(t,t').
We see that for q. = q_,, i.e. when K2 goes to 0 with A , we have E(u)—u,

dn u->1, sn u ~» sin u, cn U =» cos u, u-sw(t-to). and J(t,t')-»w'lsfnw(t’-t),
which is the harmonic-oscillator commutator function.

The VVM function. The WKB approximation to the propagator is given by the

well-known formula:




iy

\"7.
Kuxa = (M/21iR) evp (4Sc/g)/ (17)
where
PR R (3)
a2y, ke ™

is the Van Vleck - Morette function. The second expression for M, which will be
- ~ -~ . 3
used in the evaluation, uses the fact that ci,/c*,h = 19(({'5) = C‘c (ts).‘

Therefore, to get M in terms of k and to we must use the chain rule:

s 09, () %R _n(t) oty : (14)
Lok e who
In order to calculate M, we must express vk /'c",,\ and 'Df, /‘Dci‘ in
terms of 0G4, /R o 8 Fek, , etc. Since we must have

j{\ %‘l b e 1 & (l O>
(kv, kt« Vi Wy ° ' 3

where
k z Uia Q s ’bch\ u = ok U, = ,)&
( - p -, (= ;;— g
LR 3t ; & 1,
L‘ . Q‘ = iy W, o u, = o1
ok btu 3 ‘50\‘ -
. 2q,
we can easily solve for the u's in terms of the k's, to get
“0 o & u1 = __&—2-‘ \'\3 o 5‘ Ue = ‘.gi
% ! E / 'CA) / % )

s — ey o i1 v
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where EZ i k1k4 - k2k3. Substituting this result in (19))and comparing with
(16), we see that we get the value of M stated in (12), namely M =[J(ta’tb)] '1.

Feynman's Green function. Feynman's Green function G(t,t'), satisfying

. (14), is the unique Green function of the small-disturbance operator which
vanishes at both endpoints. It is important for our treatment because it is the

covariance of the Gaussian measure used to express the propagator as a path

integral. As was stated before (and proved in Appendix A), G (t,t') = J(t,t")Y(t-t'),
with J as in (16), satisfies (14). The function

1!

Ty () » LT L)
l J (4., t,)

& r)

is also a Green function, since the addition to G (t,t') is a homogeneous solu-
tion of the small-disturbance equation in t and t'. Further, G(ta.t') = G(tb.t')

= 0. Therefore, G(t,t') is Feynman's Green function. To put it in the form given

’ in (13) requires use of the identity
Tie p) . T TRY - T ST
: I 4) '

easily proved by using (16).

TV. WKB EXPANSION OF THE PROPAGATOR BY PATH INTEGRALS
Arbitrary Potential

The framework for a WKB expansion of the propagator by phase-space path

14

integrals without 1imiting procedure was set in an earlier paper "  and will be

only briefly summarized here. For a simple Hamiltonian of the form p2/2m + V(q,t)

considered here, the phase-space path integral becomes a configuration-space path
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integral, since the momentum-dependent terms are rolled into the measure and
only position-dependent terms remain to be path-integrated. The first step is to
classical action functional about the classical path qc(t)
2 2
f[ (}) -V ()< (6] ak

-

expand the
S[q] £ 51ﬁ‘+1]
__;:_ j (n) {)xa({') CU.'
<
)

n=13
(‘ = (i‘

where ) o
Cal ~ ~
V7 ) = | @7V, /29 1
[ta’tb] , and x ¢ li » the space of paths such that x(t.) = x(tb) = 0. The
classical action S_ becomes part of the WKB approximation)K“KB, and the quadratic

terms are rolled into the Gaussian measure, leaving the sum term for path integra-
tion. The result is
e
w' ( ol ‘\
K Kwej““-.(d“‘l =2 j H)* k) MY, (20)
h n- 3 —
t '
is defined by its Fourier transform

7/
where the measure w

.
SRR | RO PINTINTEY

(;:FWQ ()

]
measure on the time-interval T. K .p is given by (17). The exponential in (20)

L B &
Feynman's Green function defined earlier and J being a bounded

G(t,t') being

can be expanded to yield




|7

s P j ", n:
| . YRy V) [T i) A, (x)].
| <
To evaluate the path integral, we need the moments formula [see, e.g., Reference 15] 3
O 4,‘ Vv cdd (12)
/x(\‘)x(k‘l\m x (4, ))dw, (x) = ("‘*\)MZ’G({'( A )G“’i k- ),
| 73 31y

Cc _._.(C-T({fizm-'ltizn) 1,% n:=2wm .v,e\NAI

/
where Z denotes the sum over all different combinations of different indices

ii’ With i ilgizgo-o’inx o i 1,2,.00.“) . There are (Zm‘l)!! < (2m'1)(2m‘3)..0

5.3.1 terms in all for n = 2m.16

Thus, we see that h comes in the expansion with power !5(n1+...+nj) -Js
which is always a positive integer, since each n; is at least 3. This proves

that (21) is indeed an expansion in powers of h, and we can write:

K = K |+ RK R K e ) (23)

Wk (
where the K;s are ordinary finite-dimensional integrals over the time-interval T. 4
Polynomial potentials are best suited for this scheme, since the expansion of i3
the action terminates at some finite n. However, it is important to note that
regardless of the potential each term in the WKB expansion (coefficient of ﬁk) !

is always a terminating series. For example, inspection of (21) shows that the

first (post-WKB) term is, for arbitrary potential:




R

bk o= (2] & v xF(E) dw (x
) ( *\)\T/ g )tf ( ) o\) (zq_)

PA

" 'l;_(”(’> J Ak ds \,“‘)(()V‘;}g)sz({)?(S)d\),(x)j

LA TE T :
L G
and the moments formula gives: ’
K s [ VY e ht)ax (25)
¢
1
+_}; A3), L) R EX G e 3 M
= VPOV | 36 ()6 (6 Clss) + 2 &3 (k)] ks,
T2

Let us study the structure of the coefficients Ki' In general,the j =

term in (19) is:

Z f‘“’ ‘“’(&)j (1) dw, (%)
= oi .‘”\M f\/‘""/k\ & (4 ) dk .

mz2 w2 -
For arbitrary potentials, this is an infinite series in‘ with no constant

(26)

term. Similarly, we find that:

a) In the series for j = 2, the ny =n, = 3 term is the term proportional to
£, and the three terms Ny =Ny = 4; ny = 3, n, = 5; and ny = 5, n, = 3 are the
one proportional to ‘hz. A11 the subsequent j series start out with hk for k2 2.
b) In the series for j = 3, the three terms np =Ny =3,n3=4;n =4,

n, =ng=3;and n; = ng =3, n, =4are tHe only ones proportional to ﬁz. and
the Ny =Ny =ngs= 4 term is the only one proportional to 4\3.

c) In the series for j = 4, the term np =N, =ng=mn,= 3 is the only one
proportional to 'hz.

d) The series for j = 5 starts out with the 413 term.

Thus, we can write the term proportional to 42 in the expansion:

- - et e s kb e s el o i ST i AT, - —
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. 3 .
ETARC

- L oatas v i) .
1K "["‘ YY) ; L»é/x ').dwogx)

(o]

f -.;t- “,‘ VOV [N, ) du ()
| ‘

L[ dhdt ay, i
+6R3 > 3! YN &)V (f V (‘L’)

' f x> (k) 5”4, )x* (1 )dw (x)
Co '
+‘”4’\ j-;-q (3!) =¥ Teg VI )V )V (tq,)

[ R )R I ) d (0,
e. (27)

and the moments formula (22) gives the valug of the path integrals in terms

of Feynman's Green function and the classical path.

Application to the Anharmonic Potential

The anharmonic oscillator potential, given by (1), is V(q) = mw2q2/2 +
,\q4/4. The first-order correction to the WKB approximation is then given by
(25):
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e i
Ky = 2A4 forea)de + 324 [ arasq (tig (5).
¥ 7 2 Fe 2
3 6UA)CDEG,s) + 2 €7(40D], (2%)

where G(t,t') is given explicitly by (13) with J given by (11) and qc(t) by
(4). The resulting integrals over the elliptic functions are all well-known
and of the type tabulated in Reference 10. Higher-order corrections can be
generated at will, although they generally involve a large number of integrals.
The WKB approximation is given by (17), with the classical action S given by
(9) and the VVM function M given by (12), with J in (11). Therefore, every
function entering the semiclassical expansion of the anharmonic oscillator
propagator has been explicitly calculated, and the definite integrals giving
the coefficients of the expansion have been explicitly exhibited. It is pointed
out, again, that this treatment is nonperturbative, since the functions in-
volved in the terms of the expansion, for example qc and G in (28), depend
implicitly on )\ . This example illustrates the power of path integration

without Timiting procedure.
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FOOTNOTES

1. This paper is based in part on the author's Ph.D. dissertation, "An Investi-
gation of the Feynman Path Integral Formulation of Quantum Mechanics", The Uni-

versity of Texas at Austin, Austin, Texas, August 1975.

2. J. J. Loeffel, A. Martin, B. Simon, and A. S. Wightman, Phys. Lett. 30B(1969),
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APPENDIX A -~ THE SMALL-DISTURBANCE EQUATION

This appendix will derive and generalize some results used in the text
on the equation of small disturbances. The latter, resulting from the second
variation of the action functional, is satisfied by the variation in a classical
path resulting from a small change in the boundary conditions. For example, let
Stq) = S) A (u)] be an action functional. Each path q ski(u) is characterized
by a parameter u: q(t) = /é (u)(t) = A (u,t). If the set i A (u)} is a set
of classical paths { qc(u)} labeled by a parameter u (say a constant of
integration), then S' | 4 (u)| = 0 by definition of /3 (u). If we differen-
tiate with respect to u, we get:

N -

L'/m) i_’i“\ e (A1)

S

v

This is the small-disturbance equation with its explicit solution in terms of
the classical path: S"L /3 (u)] (second functional derivative of the action
evaluated at the classical path) yields the small-disturbance operator;'Zi[‘g(**)/:)'A
is its explicit solution, called a Jacobi field along the classical path )5 (u).
Thus, the derivative of a classical so]utiop with respect to a constant of in-
tegration is a solution of the small-disturbance equation. Note that if S is
derived from a Lagrangian which does not contain the time explicitly, and we take
the time derivative of the differential equations resulting from S' [ /3 (u)]= 0,
we find that the classical velocity Qyﬁ(u)(‘),/zt' is also a solution of (Al).
This method of "variation through ge&Aesics" was studied extensively by

J. Mi]nor17. The approach was generalized by C. DeNitt-Morette6c for arbitrary

1

action functionals, and independently by the author for Lagrangian actions. This

method of generating solutions of (A1) was known to Jacobilz.
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Lagrangian Action

Let us consider the Lagrangian action in n dimensions as a specific example:

tb
SIq] sf L (q(f),é,(e),t) dt
¢

One can show by straightforward differentiation with respect to u that
the Tinear mapping S'[A(u)) maps x  into
t,

S'[‘(u)]x = '-B-L-' -4 (£) x“(6)d
P t{ 09 de( K 3 )]7=/s(u) (A2)

if x(tb) = x(ta) = 0 and there are no discontinuities in the momentum

’aL/bﬁi. Differentiating once more with respect to u yields:

S"[ﬁ(u)}'@*)x
Tw

= [« D roars L)
1[({%(%)4—843 H%*’C‘a({){gz)] _%f—) x* (k) dt,

(A3)

where

A () = oL a L
2 () 09t 098 at (?«‘;«'%75)
(5 B;(4) = 7L L 9\_(_’9‘._'—_)

R IR I TAE T L Y

C._(H = - 'bLL-

i s 24< 244 (A4)




Note that the above matrices satisfy the relations:

T=c (B -¢)7 =-(B - C)
B =2C A-A=B-C=5x@B-B).
We assume that C(t), the Jacobian of the transformation from the

q's to the p's, never vanishes, so that a canonical formalism exists.

If fﬁ (u) is a family of classical paths Qs then both sides

of (A2) and (A3) are zero for all x(t):

L 0 A c
%i-c%(’;c%)]7:? :O (AS)

4 0 &1 - o (A
A0 + B0 & +Cy(0) = = 0. )
4 i ar 4 attd
e A ‘

The first equation is the familiar Euler-Lagrange equation, yielding the
classical solutions qc(t,u) where u is any of the 2n constants of integration,
or any other parameter (e.g. t, or tb).

The second equation is the small-disturbance equation, and the bracketed
second-order linear differential operator is the (Hermitian) small-disturbance
operator. It is solved by ch(t,u)/ ou.

Attempts at solving (A6) by "frontal assault" are sometimes found in the
literature (see, e.g., Reference 8), and usually yield only approximate solu-

tions, if any at all.

A convenient set of solutions is obtained by using endpoint boundary conditions:

9, () o 9, () = 9,°

a

-




Thus, for any fixed {1i,i'} = {1,2,...,n}, the two sets:

,Cd(.) (t) = ______’b?cém f (t = —-————Dq‘é (.H

A (<) '3 <
’bqﬁ U
are sets of solutions of (A6) satisfying the obvious boundary conditions:
§ e i Y= 0
1[‘(;)({“)'8* jm(“)
‘ s e T
Pt 0 B e

We can use these solutions as building blocks for other solutions,

which can usually be written as linear combinations of them.

Two other sets of solutions can be obtained by differentiating

qc(t) with respect to t, or ty:

. ’ 3- J,
O A 2w - 2108
'ble 'bti

They satisfy the bcundary conditions:

Ty (AN —c';f(f,,) §h(t) =0

Py o ki) - -0 w)

o ——— o e 8
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Proof. The second and third are obvious since the operations,
say, "2/ bta“ and "evaluate at tb" commute. The first and fourth

are more subtle. The first is derived as follows:

; . . R
At = -[R) -] = - 760 ¢
-

—_————

ot

a

A
Sk M e -
=i} e - i)
T S T AR ¥
ﬁ(ffﬁ =@ )= ) = -7 ()

The fourth relation is derived in a similar manner.

Theorem. Let x(t) and y(t) be two solutions of the small disturbance
equation 0&6) in one dimension. Their Wronskian depends on t only

through C(t):

W) = x ()0 -x@§l) = x CENCT (), (A7)

where X is a constant, and it is assumed that C(t) never vanishes.
If & #0, x and y are linearly independent.

Proof.
W = *3—‘3" = -C"(Ax+13>'<)} + C_‘(AJ-fBj)X
= -BC_'(kz-jx) = -—BC"V\/

f- ,
ki NUEY ““"[‘/e BisiCl(s)ds],
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However, we can see from (A4) that B = 6 in one dimension, and the result follows.

Green Functions
We now study the Green functions GJk(t,t') of the small-disturbance

operator, which satisfy:

[ A‘ﬁtt) + B,.J(k) oﬁ; + C;“i)%‘_jéﬂ(&,t') - 8‘,&3(&4')’ |
(AR)
where A, B, and C are given by (A4) for q = q.- We restrict ourselves to one
dimension.
Theorem

The advanced and retarded Green functions are unique and are given by

¢ [rA) =€ (1.8} = JWU )Y 0-1) © (AS)
where J(t,t') is the Jacobi commutator:
29.(6) 4.4 DY) D9.(t)
DN, by T 0 oly
J-({',{') = ‘ / (A|O)
)l  _ opdh) 29.4)
/?'7/' \L.(l = \(/1' \LO{l

0(‘ and X being any two constants of integration. tb in the denominator
can be replaced by ty.

Proof. We Took for the most genera] Green function of the

form G (t,t') = f(t,t')Y(t-t'). Upon differentiation, and use of the

fact that x §'(x) = - §(x), we have:




3|

2 f V- )+ free) S(e-t)

AET_f (bdy-t) 4 LE, (L) Ste-e) - i) 3t
’btl - . t"‘t’

= ) 3 ¥
DGG = {A(b)+'8(f)€(:+ C(f):};c-l] G
] Vi ‘ } ’
2 YD fiep) + Sle-t) B+ 202 "ff?,]mf‘),

where f,l(t,t') denotes the derivative with respect to the first argu-

ment, evaluated at (t,t').

Thus, G~ is a Green function if th(t,t') =0, {.e. ¥F it L")

is a homogeneous solution in t, and if the coefficient of the delta

function at t = t' is 1, If we expand about t = t':

FIEU) = FeA) + (6-6) £ (E4) ¢ L (-6 (£€) oy

the second condition gives the boundary conditions on f:

{ f(t,t) = 0, since C(t) # 0

f,,(tt) = CH(),
If f(t,t') is a solution in t, éhen we can write
Ple) = B x @) + YD) 40,

where x and y are two linearly independent solutions. If we insert

k4

TR
e
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the boundary conditions, and remember (A7), which indicates that Xy - xy =

.,cc(ta)C'l(t), we have:
Y“)\ﬁwl) - = (t') 3(*)

¢ (n)[wﬂ) % (t,) - j(h-.)x(’(“)]
Let us choose X (t) = g, (t)/ o and j“') " ’lﬁcﬂ)/ﬂédz_ :
Bt definition of C(t), C(t,)) = —"¢*L/¢q (k) = -0 |~L(h\)/bﬁ‘(h\\,
so — C(%) . ‘.,L,((’(.,\)/ e . k. (ta) / 2o . Inserting this in (A11)

we see that f(t,t') is given by J(t,t') in (A10). Note that our J(t,t') is
18

»r(k,{'): . (/—\H)

what Bryce DeWitt ~ calls 6 (he defines E by £ = G, but since his Green
functions are the negative of ours, E =J).

The greatest simplification in J(t,t') as expressed in (A10) occurs
when the constants of integration are initial (or final) position and
momentum, for example o, = ¢ {HaYy = Sl R 1»( (l-“\ - ,r“ !

The denominator is then equal to 1, and

n

‘]‘({I{l) S g‘,‘((() “L (\ ) " L‘!( (\ ) ;‘,(l,‘((') %’c(( ({)ch({-)}
cq“ brﬂ 07& ¢ r\ (ﬁa,fn)
This Poisson bracket becomes the commutator | Ge(t), Cx(&')] /4' h when
the system is quantized, whence the name of the function.
Feynman's Green function, which vanishes at ta and tb’ can be built from

6™ and G* as follows:
Gt Ye 6 EL )+ TUANIR VYT G 1)
SELE) FO(E )T ) [T ). (AR)

Indeed, it is readily apparent that the additions to G and G+ are homogeneous
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solutions, and that G vanishes when t or t' is ta or tb' Another form for G

is shown in the main text (Equation 13).

Particle in a Potential

Let us concentrate on the case of a particle in a potential in one

dimension, with Lagrangian L = mé2/2 - V(q). The dynamical equation is
= - / "
¢ -0
9. () + m*V'[q. ()] = 0. (A13)
The small-disturbance equation is:

e Bt R R TN (A1)
L A # : "il

Consider two linearly independent solutions of (Al4), D and D, satisfying:
Dlk,) = | D (k)= o
blh)=0 V)=~

Their Wronskian W = DD - DD is constant and equal to -1. D and D depend on t

(A15)

b.
ta’ a and q, through qc(t). The antisymmetric Jacobi commutator along the
classical path qc(t) can be shown to be:

T C) = DY DD - D) D),
It is obviously a solution of (Al14) in both t and t'.
Classical path in terms of Jacobi fields
t t
M= A [ dras +B [ Blsias +q,
where ‘t“ ta
(Al)

% - V(3 L Byan

S
i

B = V(y,).
fh(s\ds g
T
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Proof. ac(t), being a derivative of the classical path, is a solution
of the small-disturbance equation, and hence a linear combination of D and D:

ac(t) = AD(t) + BB(t). Integrating from t,tot yields:

q, (%) - Aftb(s)c\s + B {)(’.!5(53(\5 L Ly
Fi £
However, qc(t) is now the solution of a third-order differential equation.
Therefore, we need a third boundary condition, other than qc(ta) = q, and
qc(tb) = qy. It is provided by the dynamical equation (A13) evaluated, say,

at tb. This gives A and B. Note that:

CL (td) = ADt.) + B D(ta) (A7)
T = A ey

Criterion for non-existence of a classical path

¥hat must the relatioship between ta,tb,qa,qb be in order for
a classical path qc(t) such that qc(ta) = Q. qc(tb) = q, not to
exist? The answer is given in terms of Jacobi fields. 9 will not

exist if:

a).[rv(s)ds =0, of —5(%‘): M. o

avd b) 9, -9, -v:(?b)/; D(s)ds # O (A19)
This is easily proved by looking at (A ) which gives qc(t) in terms
of the Jacobi fields. qc(t) is infinite if;the denominator of A is
zero (first condition) and the numerator of A is nonzero (second con-
dition). That the two forms of the first condition are equivalent can
be seen by differentiating (A7) with respect to Q- On the right
hand side, we get ‘bdc(ta)/bqb =M= llﬁ(ta))_ and on the
left hand side we get a fraction with denominator (jCD(s)ds)l . Thus,

whenever B(ta) vanishes, JCD(s)ds must also vanish.

e A




For a general discussion of these conditions in the context
of caustics and catastrophe theory, see Ref. 19.

Zero Jacobi field. The only Jacobi field vanishing at both

t, and ty is f(t) = 0, unless
) Dlta) = M =0

Avd  b) ‘ib’(fa’\/'(dl,,)f D(s)ds = o J, (A20)
T

in which case f(t) = aD(t), where a is an arbitrary constant.

Proof. It is obtained by writing f(t) = aﬁ(t)+bD(t) and putting in the boundary
conditions. However, if'ﬁ(ta) = 0, we may not have a classical path,
in which case a Jacobi field is meaningless. Therefore the second con-
dition is necessary to insure that one or more classical paths might
exist.

Example: The harmonic oscillator

We illustrate this with the harmonic oscillator (V(q) = %tuzqz).
The classical path, for arbitrary endpoints, is given by:
QA w (bt + 9, Ao w (£-£)

‘1‘(H= = A&r)(wf 4—({’)

where T = t -t_ and
; - V/

A= (am0n) " [9049," - 24,4, co0T]
(P_chw(ciqd«i«wh =, A wity )

1 Y
[c‘a +951“ 2‘?.,.,?4,0‘9” ‘J/L
It may fail to exist when sin(wT) = 0 (the amplitude becomes

infinite), except when qa=qb-0, in which case there is an infinite 1

number of qc's.




The various cases are summarized in Table A).

The Jacobi fields in this case are:

D) = cow(t,~+)

We can quickly verify all our criteria. We have:

(a) mes)o\s o Bilbe & iy

(L)ff)(s\ds =
-

If WT =niT , we have no classical path, unless:

f.e. if 9, = q, and w7 = 27 (yielding one path), or if 9%

b P, :
D(H— w/}«mw({’(, f)

/ \
= ([-cowT)

L R V'(Qb) w-z(l - coswT) =0

b

=0,

which implies that V'(qb) = 0 (yielding an infinite number of paths).

Harmonic q. 7 q q q. =q. #0 q, = q. =0
Oscillator . b . b " . b
Unique q_(t) tatt,
exists CCW’(t‘ z )
")T"f AT | and is given (L“)"qo - q.(t) = 0
by (5.89) e ()
q.(t) never t.+4) | Noncountably
c Conui\ b § e
wl=2aT exists ‘]((H 1, ( : ) ggf;?;sgizg'{’ber
Cor (n W) paths given by:
q.(t) =
WT = qc(t) never qc(t) never . A sinw(t, -t)
(Zv\fl)’lT exists exists (A arbitraryl))

Table A1. Classical Paths for the Harmonic Oscillator (n = ..

. e e
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The Commutateor Function

The dynamical cquation (A13) can be solved by quadratures: If

we substitute q_(t) = u, we obtain the energy E = % mu? + V(g ) =

const. as a first integral. A second integration gives:

F “:;{'a /qc /qq / E) =

which yields t(qc) rather than qc(t). In order to differentiate the
classical path with respect to the constants of integration (here, the

energy E and the initial position qa), we will need the implicit func-

tion theorem. The latter states essentially that:

F(X,,.--,X.\)':O = 3_)_(1 e -

}xf

This gives

_\/IE- Vq,)
E =~ Viq.)




Tien)- \/LE*v(q(m)][E V(3 (¢)]

X =

2w

Substituting these in (A10), we obtain the commutator (here P méc, X, =q
. =E):

9, (')

a’

9 &)

If the constants of integration are initial positicn and

momentum q_ and P,» then J(t,t') is still given by (A21) with E re-

placed by pa2/2m + v(qa). This is not a trivial statement (compare
with (A2¢) ), as we show below.

[E-vi) ]l

(A2e)

3%




Proof. In terms of 9, and Pys the solution is

7
: “h
Flt b 1, dad) = bt % [ T804 viq ) - Vi) ax =0
(ig 2un

Then
9. - WF/9,

29, VF/09, v 1.

; [g”@&-vm} {%ﬁ + V%’ﬁ’fd{jzlﬂ

‘ B

9, __oF/ota

Vfa NF/d9, 5 s

"M

h [ 2
_—__;fl {;fz“ﬂi+v(1(()‘v(q‘)} /‘i{%‘__ +V(7“)'V(X)S Ax

a

(Ary)

Substituting the above in expression (15) for J, some terms cancel out

and we get the result. The non-triviality o} this result is iilustrated by the
fact that C¢ /

e L‘,“ in (A24) is not obtained from ‘Zﬁ‘ /"ﬁa
(A21a) by simply replacing E by pg / 2m + V(qa).

in

We can give the commutator in terms of the endpoints q, and Q- For this
we have:




!
7
!

Pl - [ e vor s
(Ars)

G (4, ta i T —tL t ‘\y- f L!: V(x)] Jx

that is, E in the first equation is really a function of 9, and q >

given implicitly by the second equation. It is no Tonger an independent

constant of integration, but qk 15, ’ Thus, we have:
-2
2F . L\
L I P / [e-ve] "
rb ’E_E A -/’L
T 9, ‘\J‘Vi‘ LE-Vi4]

where 7 Llaqa is obtained by using the implicit function theorem on G:

o 7c 3 “f
BE =._EE’_/E>_‘7:::.._:E___“~ [E-v) "]
. WGRE  JE-VES S
Finally,

7, -3
%
Qm‘_[E—Wm)]_ Lz ve0)

s = Vi 7 -3
Lo oni f " [E- V]

Similarly, we find:
/ -‘} _3 l
?i( - [_E._\./_(_q._] f [E V(x)] tix/f [E V(x Adx
'\0(]‘, 3 V(c" ‘),‘

As for the Van Vleck - Morette function M = -mch(tb)/bqa, we use:




e
g (6= ] 2 {6, 9 - VY]
This gives:

¥4 (%) Wl g
'\4;—'M_—-—-—:"-‘L‘d'—— [E'—V((]‘b)J —_\d—?—q' J

I r7b -3/
Moy § [e-via)[e-vis, ) J7 [E-Ved]  dx

Finally, the commutator in terms of the endpoints is given by (A10) with

X = s and Na =Gyt

-1
Tt =(2) \/E V(4@ VE- V‘i(”)[?f E- Vl»)}a/;‘.]

q.(¢)
{ x[e-vea] ey Te-ve T
f [E -V f d?[E-V(;ﬂ] }) (Az¢)

where q (t,q.,q,) and E(q_.,0,) are given implicitly by (A25).
(v a’h at'h

%)

B R R R Ty S v pr——
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